A NEW SYNTHETIC APPROACH TO L-2,3-0-ISOPROPYLIDENE-C₂ CHIRONS

José L. Marco^{*} and Benjamín Rodríguez

Instituto de Química Orgánica, CSIC, Juan de la Cierva 3, E 28006 Madrid, Spain

<u>Abstract</u>.- Starting from L-ascorbic acid the preparation of L-(S)-glyceraldehyde and L-(R)-glycerol acetonides, and 1,2-0-isopropyl-idene-L-threitol is described.

The chiron approach to the synthesis of natural products is limited by the availability of simple, highly functionalized C_3 and C_4 chiral building blocks.¹ In this letter we report a new and simple synthesis of the useful 1,2-0-isopropylidene-L-threitol,² 3, L-(S)-glyceraldehyde and L-(R)-glycerol acetonides,³ 4 and 5, starting from L-ascorbic acid,⁴ 1.

Jung and Shaw^{4a} described the ozonolysis, followed by dimethyl sulfide treatment, of 2 (see Scheme) giving "high yields of the ester oxalate 6, but when further transformations of 6 proved difficult, this route was abandoned". We have now reinvestigated this process, modifying it and found that the ozonolysis of 2 followed by lithium aluminium hydride reduction of the crude reaction mixture gives compound 3^2 in 60% overall yield.⁵ This method compares favourably in terms of simplicity and yields with the synthesis of 3 starting from (2R,3R)-dimethyl tartrate.²

<u>Scheme.</u> i: O_3 , CH_2Cl_2 , -78°C, 15 min; then, evaporation, LAH, THF, 0°C \rightarrow r.t. overnight. ii: Pb (OAc)₄, CH_2Cl_2 , K_2CO_3 . iii: NaBH₄, EtOH.

Lead (IV) acetate cleavage of 3 according to the procedure of Dumont and Pfander⁶ gave 4 (80% yield) [b.p.: 43-46°C (13 mm Hg); $[\alpha]_D^{25}$ -63.0° (benzene, c 8). Lit.⁷ $[\alpha]_D^{25}$ -67.9° (benzene, c 8)].⁸

Reduction of 4 with sodium borohydride in ethanol⁹ gave 5 (90% yield) [oil, $[\alpha]^{25}$ -11.2° (MeoH, c 2.6). Lit.⁹ $[\alpha]^{25}$ -10.7° (MeOH), c 1.55)].¹⁰

Acknowledgement

We thank the "Comisión Asesora de Investigación Científica y Técnica" and the CSIC for financial support.

References and notes

- 1. S. Hanessian, 'Total Synthesis of Natural Products. The "Chiron" Approach', Pergamon Press, 1983.
- 2. A. H. Al-Hakim, A. H. Haines, and C. Morley, Synthesis, 1985, 207.
- 3. H. De Wilde, P. De Clercq, M. Vandewalle, and H. Röper, Tetrahedron Lett., 1987, 28, 4757.
- Alternative methods for the synthesis of 3 and 4 starting from 1 have been previously described:

 a) M. E. Jung and T. J. Shaw, J. Am. Chem. Soc., 1980, 102, 6304;
 b) S. Takano, H. Numata, and K. Ogasawara, Heterocycles, 1982, 19, 327;
 c) C. Hubschwerlen, Synthesis, 1986, 962.
- 5. In a typical experiment 3.4 g (0.013 mol) of 2, dissolved in 150 ml of dry CH_2Cl_2 and cooled at -78°C, were ozonized for 15 min. After the flask was flushed with argon, the solvent was evaporated and the oily residue dissolved in dry THF (50 ml) and treated with 2 g (0.05 mol) of LAH at 0°C. The mixture was stirred at room temperature overnight and treated with 2 ml of H₂O, 2 ml of NaOH (15% w/v) and 6 ml of H₂O, filtered and evaporated. Flash-chromatography (silica gel, EtOAc) yielded 3 (60%): oil, $[\alpha]_{12}^{25}$ +3.5° (MeOH), c 1.8) [Lit.² $[\alpha]_{12}^{25}$ +3.9° (MeOH, c 1.4)]; IR (film): 3500-3200 cm⁻¹; ¹H NMR (90 MHz, CDCl₃) δ : 4.20-3.55 (6H, m), 2.85 (2H, br δ , two OH), 1.45 (3H, δ), 1.35 (3H, δ); identical in all respects with the described compound.²
- 6. R. Dumont and H. Pfander, Helv. Chim. Acta, 1983, 66, 814.
- 7. E. Baer and H. O. L. Fischer, J. Am. Chem. Soc., 1939, 61, 761.
- 8. IR (film): 1740, 1380 cm⁻¹; ¹H NMR (90 MHz, CDCl₃) δ : 9.70 (1H, d, J = 1.5 Hz), 4.50-3.95 (3H, m, 1.45 (3H, δ), 1.40 (3H, δ).
- 9. K. E. MaloneyHuss, Synth. Commun., 1985, 15, 273.
- 10. IR (film): $3500-3200 \text{ cm}^{-1}$; ¹H NMR (90 MHz, CDCl₃) 5: 4.40-3.55 (5H, m), 2.50 (1H, br s, OH), 1.45 (3H, s), 1.40 (3H, s); identical to the described data.^{4a}

(Received in UK 9 February 1988)